Otolith and body-shape characteristics provide insights into the recruitment dynamics of sand gobies (*Pomatoschistus minutus*) along a restored Fyn coastline

Dr Glenn Wilson

University of Southern Denmark

Introduction

Fisheries or habitat restoration – recruitment is a key underpinning process

But we need to understand the timing of key early lifecycle points, to understand what the critical regulatory factors are

Introduction

Conventional to approach is to identify these in terms of coarse habitat shifts or external development

But other tools may provide additional insights

Southern Denmark

Dr Glenn Wilson wilson@biology.sdu.dk

But why sand gobies?

We know something of their general life history

- spawn inshore
- larvae hatch at ca. 2.5 mm, after 10-15 days
- larval metamorphosis completed at around 9-10 mm, but remain pelagic until ca. 17-18 mm
- shift offshore for winter, returning in early to mid Autumn

Very abundant

- ought to be a key species with which to establish how fishes contribute to the Baltic/Wadden coastal ecology

But, there is still lots that we don't know – particularly during early life history

- direct descriptions of their age growth
- the timing of key developmental transition points

Study objectives

How much morphological change occurs during sand goby early life history? When are the significant transition points in their early development?

- 1. Establish direct relationships between age and body-size;
- 2. Examine how early body shape varies with body size; and
- 3. Examine whether the timing of any shifts in body shape are mirrored in development of the otoliths

1. Monthly sampling at Gyldensteen Lagoon with a fine beach-seine net, May to September 2018;

2. Measurements of head and body dimensions recorded from fish of 3.6 to 32 mm SL;

Southern Denmark

Dr Glenn Wilson wilson@biology.sdu.dk

3. Sagittal otoliths were removed and mounted, then measured, photographed, and increment counts obtained (May to July fish to date).

3. Sagittal otoliths were removed and mounted, then measured, photographed, and aged (May to July fish to date).

How does body shape vary with early growth?

How does body shape vary with early growth?

Standard length (mm)

- Only subtle changes apparent
- Inflection at 10.2 to 11 mm SL in all characters
- A second inflection only in orbit diameter (17.1 mm SL)

Early somatic growth is quite rapid

University of

Southern Denmark

@drggwilson

Lateral variation can be substantial

Otolith shape varies with early growth

Dr Glenn Wilson wilson@biology.sdu.dk

Otolith shape varies with early growth

- Greater shape variation among otoliths of smaller fish (PC2)
- Mostly characterized by roundness, sinuosity and perimeter

So what?

Recruits appear driven by a short lifespan – brief onshore interval (3–5 months) – annual longevity

- Rapid somatic growth, with minimal external change
- BUT, metamorphosis appears to be a protracted process

So what?

Recruits appear driven by a short lifespan – brief onshore interval (3–5 months) – annual longevity

- Rapid somatic growth, with minimal external change
- BUT, metamorphosis appears to be a protracted process

Developmental complexity particularly obvious in the otoliths

- Substantial lateral variation within individuals
- Transition points in growth and shape-change shortly after both the shift to the juvenile phase and to the demersal environment, but also at points in-between

So what?

Recruits appear driven by a short lifespan – brief onshore interval (3–5 months) – annual longevity

- Rapid somatic growth, with minimal external change
- BUT, metamorphosis appears to be a protracted process

Developmental complexity particularly obvious in the otoliths

- Substantial lateral variation within individuals
- Transition points in growth and shape-change shortly after both the shift to the juvenile phase and to the demersal environment, but also at points in-between

Extended pelagic phase suggests a particular vulnerability to factors influencing the habitat quality of the coastal water column

Thanks...

wilson@biology.sdu.dk Dr Glenn Wilson

